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Main Challenges U P - k
 Challenge 1: Extracting Spatio-temporal Representations from Video Footage S —
 The identification of specific situations often hinges on a complex mix of spatial and e RPE12T T — al

temporal data e  Feature Extraction
* Challenge 2: Navigating the Complexity of Data in Anomaly Detection Models « To effectively capture spatio-temporal information from the segments, we employ a 3D-
* Video recordings capture a broad spectrum of real-world dynamics and result in CNN pre-trained on large-scale action recognition datasets, such as Kinetics-400 [6] and
complex and often non-uniform data distributions Charades [7]

 Traditional anomaly detection methods, which typically generalize data into a
singular distribution, are prone to high false positive and false negative rates

* Transformer-based Autoencoder

|  Key Features Distinguished from Conventional Transformer
Anomaly Score is calculated from all the layers

_Latent space _Latent space 1) The MLP (Multi-layer Perceptron) layers within our encoder are designed to
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§  Self-attention is designed to allocate higher weights to input segments that exhibit
o greater similarities within the sequence

* Overcoming Challenges _ , _ o _
 Due to their uniqueness and the scarcity of similar samples, anomalies tend to draw

* We leverage a pre-trained 3D-CNN (Convolutional Neural Network) [3] to extract high attention among themselves

spatio-temporal representations o _ o
By exploiting this, we propose a novel method for determining the anomaly score,

* We propose a novel Transformer [4]-based Autoencoder (AE) to deal with complex data which involves aggregating the attention weights across all encoder layers
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 The encoder in our framework progressively generalizes the training data employing X = {X0,Xi, s Xn_1} a b
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e Remarks
 Discerning the context of human behavior from a single Experiments and RESUltS
frame is challenging, so we segment continuous video data
into uniform intervals along the temporal axis « Dataset hTreSpaS“
* We define a single data point as a segment and an anomaly e Abnormal Behavior CCTV Video Dataset [8] provided by the x
data point as a segment that contains at least one anomaly South Korean National Information Society Agency (NIA)
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Three abnormal behavior types: trespassing, fighting and

vandalism
Video specification of each behavior type
time of day length (s) frame rate (fps)
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* Self-attention Mechanism «  We segment the video data into intervals of 128 frames, with the
* By employing parallelizable self-attention mechanism, number of data points (N) for each type of behavior Daltsset Tfelszals;ing Va;‘jz“;m Fllg;‘;‘gg
Transformer [4] can consider global dependencies within the * The input frames are resized and sampled at regular intervals to anomaly ratio 0016 0.049 0.040
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* Multi-head attention performs self-attention using multiple model used in the experiments AE-SVDD [17] 0.864/0.263 0.892/0.226 0.911/0.262
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SELS O WEIg S 1O Tacllitate attention Opera 1oNns from various ° Performance cOmparison Anomaly Transformer [21] | 0.737/0.326 0.724/0.144 0.790/0.162
perspectives VATMAN (ours) 0.913/0.278 0.899/0.274 0.944 /0.455

*  Our method outperforms the existing solutions Table 1. AUROC/AUPRC performances of compared methods

MHA(X) = Concat(heady, ..., heady, )W ©

 This indicates that our method not only precisely identifies the (N: total number of data points)
head; = Self-Attention;(X) anomalies but also minimize false alarms and false negatives oot shane Do
. T . . : . . .

Self-Attention;(X) = softmax(QK" //dx)V across different datasets D TE T (16150160 043170015 0162 /0,125 0500 70076
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anomaly scores at each stage of the generalization process

* Anomaly Transformer [5] is anomaly detection approach in Table 2. AUROC/AUPRC performances with difference features

time-series data « 6t layer: while the data begin to show less varied distributions
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