VAT MAN Video Anomaly Transformer for Monitoring Accidents and Nefariousness

Harim Kim¹, Chang Ha Lee², Charmgil Hong¹

¹Handong Global University, ²GMDSOFT

Introduction

- Video Anomaly Detection
 - Anomaly detection is identifying atypical patterns that diverge from the majority
 - Recent advances in deep learning have sparked increasing interest in utilizing video data for anomaly detection
 - Video anomaly detection methods [1,2] can identify abnormal behaviors in video footage, and reduce the workload of human operators
- Main Challenges
 - Challenge 1: Extracting Spatio-temporal Representations from Video Footage
 - The identification of specific situations often hinges on a complex mix of spatial and temporal data
 - Challenge 2: Navigating the Complexity of Data in Anomaly Detection Models
 - Video recordings capture a broad spectrum of real-world dynamics and result in complex and often non-uniform data distributions

- Feature Extraction
 - To effectively capture spatio-temporal information from the segments, we employ a 3D-CNN pre-trained on large-scale action recognition datasets, such as Kinetics-400 [6] and
- Traditional anomaly detection methods, which typically generalize data into a singular distribution, are prone to high false positive and false negative rates

- **Overcoming Challenges**
 - We leverage a pre-trained 3D-CNN (Convolutional Neural Network) [3] to extract spatio-temporal representations
 - We propose a novel Transformer [4]-based Autoencoder (AE) to deal with complex data distributions
 - The encoder in our framework progressively generalizes the training data employing self-attention mechanism
 - The level of generalization for individual data points is indirectly assessed through attention weight at each self-attention layer
- Remarks
 - Discerning the context of human behavior from a single frame is challenging, so we segment continuous video data into uniform intervals along the temporal axis

Charades [7]

- Transformer-based Autoencoder
 - Key Features Distinguished from Conventional Transformer
 - The MLP (Multi-layer Perceptron) layers within our encoder are designed to gradually reduce the dimensionality of the output space at the 3rd and 6th layers
 - 2) We employ random sampling from all input segments to generate input sequences
 - 3) The decoder is designed as an MLP structure to simply match the output dimensions

 $-\mathbf{x}'_i \|^2$

Loss Function

۲

Detecting Anomalies

Reconstruction loss
$$= \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i\|$$

- Self-attention is designed to allocate higher weights to input segments that exhibit greater similarities within the sequence
- Due to their uniqueness and the scarcity of similar samples, anomalies tend to draw high attention among themselves
- By exploiting this, we propose a novel method for determining the anomaly score, which involves aggregating the attention weights across all encoder layers

Experiments and Results

Dataset

 We define a single data point as a segment and an anomaly data point as a segment that contains at least one anomaly frame

Related Work

- Self-attention Mechanism
 - By employing parallelizable self-attention mechanism, Transformer [4] can consider global dependencies within the data and reflect the complexity and context of input
 - Multi-head attention performs self-attention using multiple sets of weights to facilitate attention operations from various perspectives

 $\begin{aligned} & \textit{MHA}(X) = \textit{Concat}(\textit{head}_1, ..., \textit{head}_h) W^O \\ & \textit{head}_i = \textit{Self-Attention}_i(X) \\ & \textit{Self-Attention}_i(X) = \textit{softmax}(QK^T/\sqrt{d_k}) V \\ & Q = XW_i^Q, \ K = XW_i^K, \ V = XW_i^V \end{aligned}$

- Anomaly Transformer
 - Anomaly Transformer [5] is anomaly detection approach in time-series data
 - This approach tends to make input data points appear more similar by applying the self-attention (weighted sum) operation across multiple windows

- Abnormal Behavior CCTV Video Dataset [8] provided by the South Korean National Information Society Agency (NIA)
- Three abnormal behavior types: trespassing, fighting and vandalism

Video specification of each behavior type				
time of day	length (s)	frame rate (fps)		
daytime	~ 3600	30		

- Data Preprocessing
 - We segment the video data into intervals of 128 frames, with the number of data points (N) for each type of behavior
 - The input frames are resized and sampled at regular intervals to match the input shape required by each pre-trained 3D-CNN model used in the experiments

Performance Comparison

- Our method outperforms the existing solutions
- This indicates that our method not only precisely identifies the anomalies but also minimize false alarms and false negatives across different datasets
- Visualization of Attention Weights
 - **1-3rd layers**: suggests that our approach can extract meaningful anomaly scores at each stage of the generalization process
- 6th layer: while the data begin to show less varied distributions compared to earlier layers, higher attention weights continue to be assigned to anomalies and their vicinity
- Case Analysis

Trespassing

Dataset	Trespassing	Vandalism	Fighting
Ν	1,419	1,432	1,389
anomaly ratio	0.016	0.049	0.040
AE	0.907 / 0.343	0.839 / 0.224	0.895 / 0.330
VAE	0.907 / 0.300	0.834 / 0.219	0.892 / 0.321
AE-SVDD [17]	0.864 / 0.263	0.892 / 0.226	0.911 / 0.262
VAE-SVDD [22]	0.845 / 0.388	0.802 / 0.197	0.731/0.119
Anomaly Transformer [21]	0.737 / 0.326	0.724 / 0.144	0.790 / 0.162
VATMAN (ours)	0.913 / 0.278	0.899 / 0.274	0.944 / 0.455

Table 1. AUROC/AUPRC performances of compared methods(N: total number of data points)

	Input shape		Dataset	
	(T×height×width)	trespassing	vandalism	fighting
P3D [16]	(16×160×160)	0.431/0.015	0.762 / 0.128	0.502 / 0.076
I3D [5]	(64×224×224)	0.842/0.324	0.878 / 0.305	0.826 / 0.245
S3D [20]	(64×224×224)	0.772 / 0.294	0.919 / 0.357	0.594 / 0.078
X3D [7]	(16×224×224)	0.880 / 0.367	0.897 / 0.236	0.915 / 0.383
TimeSformer [3]	(16×224×224)	0.690/0.172	0.755 / 0.173	0.684 / 0.142

Table 2. AUROC/AUPRC performances with difference features

0.018

0.017

 $\operatorname{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X}) = \left[\frac{1}{L} \sum_{l=1}^{L} \left(\operatorname{KL}(\mathcal{P}_{i,:}^{l} \| \mathcal{S}_{i,:}^{l}) + \operatorname{KL}(\mathcal{S}_{i,:}^{l} \| \mathcal{P}_{i,:}^{l})\right)\right]_{i=1,\cdots,N}$

- (a): the precise moment when a person dressed in red jumps over the fence was successfully pinpointed
- (b): the detection was triggered by a white truck passing by, likely due to the scarcity of such events in the training data
- (c): despite being labeled as normal in the dataset, it can be considered as a potential anomaly

HANDONG ARTIFICIAL INTELLIGENCE LAB	Contact Info.	 Boekhoudt, K., & Talavera, E. (2022, November). Spatial-temporal transformer for crime recognition in surveillance videos. In 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1-8). IEEE. Naji, Y., Setkov, A., Loesch, A., Gouiffès, M., & Audigier, R. (2022, November). Spatio-temporal predictive tasks for abnormal event detection in videos. In 2022 18th IEEE International Conference on Advanced Video and Signal Based Video and Signal Based Surveillance (AVSS) (pp. 1-8). IEEE. Based Surveillance (AVSS) (pp. 1-8). IEEE.
ARTIFICIAL INTELLIGENCE LAB	Presenter: Harim Kim (hrkim@handong.ac.kr)	[3] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. [4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
GM>>SOFT	Collaborators: Chang Ha Lee (yielding@gmdsoft.com) Advisor: Charmgil Hong (charmgil@handong.ac.kr)	 [5] Xu, J., Wu, H., Wang, J., & Long, M. (2021). Anomaly transformer: Time series anomaly detection with association discrepancy. <i>arXiv preprint arXiv:2110.02642</i>. [6] Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., & Zisserman, A. (2017). The kinetics human action video dataset. <i>arXiv preprint arXiv:1705.06950</i>. [7] Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev, I., & Gupta, A. (2016). Hollywood in homes: Crowdsourcing data collection for activity understanding. In <i>Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14</i> (pp. 510-526). Springer International Publishing. [8] Aihub. https://aihub.or.kr/, 2019. Accessed: July 15, 2023.