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          Intro & Motivation
· Increasing amount of clinical data in Electronic 

Health Record (EHR).

· Modeling the dynamics of clinical data can be 
very complex.

            Goals
· Building tractable temporal models of clinical 

data by finding a low-dimensional representa-
tion of patient states.

· Represent patient case sequences using Hidden 
Markov Model (HMM).

· Identify key patient states in a population of post-
surgical cardiac patients.

         Challenges
· Learning the dynamics of high-dimensional 

observation data in EHRs easily becomes 
intractable.

· Training HMMs needs to a priori decide how 
many hidden states will be used in the models.

          Methods
· Assumptions

· The observations defining the patient case at any point in 
time are independent of each other given the hidden state.

· The observations associated with the same hidden state 
are similar.

· Procedure

          Experiments & Results
I. Analysis of Patient States using Spectral Clustering

· Goal: To identify and approximate important patient states.

· Data: Daily medication administration records that were given to 2,878 
post-surgical cardiac patients (PCP) [Hauskrecht et al., 2010].
· Binary vectors of 302 medications whether or not the corresponding medication was given to 

the patient during its time-window.

· The length of patients’ medication sequences ranged from 1 to 151 days.

· Disregarding sequence structures, we have 30,828 binary medication administration vectors.

· Result: The support for clusters over five hospitalization periods (Qi ’s).
             (Qi denotes the 24-hr observation at the i/4 point of patient’s hospitalization.)

II. Classification of a Surgery Type using HMMs

· Goal: To assess the modeling capability of our approach.

· Data: Daily medication records of 539 patients with prosthetic valve 
replacement surgery and 252 patients with tissue graft valve 
replacement surgery.

· Method: 
i) Training: For each of the 2 surgical groups, train an HMM with a training set.

ii) Classification: Estimate the likelihood of each test sequence on both models. Pick the label 
of the model that maximizes the likelihood p(x | Mk), where Mk is a model.

· Result: The confusion matrix for classification with hidden Markov Models.
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ht: Hidden states
xi: Observations
ts,t: Transition prob. p( ht | hs )
ot,i: Observation prob. p( xi | ht )
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