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- Increasing amount of clinical data in Electronic
Health Record (EHR).

Intro & Motivation

- Modeling the dynamics of clinical data can be
very complex.
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\\‘J}Z - @Goals

- Building tractable temporal models of clinical
data by finding a low-dimensional representa-
tion of patient states.

- Represent patient case sequences using Hidden
Markov Model (HMM).

- ldentify key patient states in a population of post-
surgical cardiac patients.
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/\} Challenges

- Learning the dynamics of high-dimensional
observation data in EHRs easily becomes
intractable.

- Training HMMSs needs to a priori decide how
many hidden states will be used in the models.
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Methods

- Assumptions

- The observations defining the patient case at any point in

time are independent of each other given the hidden state.

- The observations associated with the same hidden state
are similar.

- Procedure

Spectral Clustering
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Number of Clusters
+ Cluster Labels

# Hidden States
= # Clusters

hi: Hidden states

Xi: Observations

ts1: Transition prob. p(h:/hs)
ot,i: Observation prob. p(xi/h:)

Hidden Markov Model

g II Experiments & Results

l. Analysis of Patient States using Spectral Clustering
- Goal: To identify and approximate important patient states.

- Data: Daily medication administration records that were given to 2,878
post-surgical cardiac patients (PCP) [Hauskrecht et al., 2010].

- Binary vectors of 302 medications whether or not the corresponding medication was given to
the patient during its time-window.

- The length of patients’ medication sequences ranged from 1 to 151 days.

- Disregarding sequence structures, we have 30,828 binary medication administration vectors.

- Result: The support for clusters over five hospitalization periods (Qi’s).

(Qi denotes the 24-hr observation at the i/4 point of patient’s hospitalization.)
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Il. Classification of a Surgery Type using HMMs

- Goal: To assess the modeling capability of our approach.

- Data: Daily medication records of 539 patients with prosthetic valve
replacement surgery and 252 patients with tissue graft valve
replacement surgery.

- Method:

) Training: For each of the 2 surgical groups, train an HMM with a training set.

i) Classification: Estimate the likelihood of each test sequence on both models. Pick the label
of the model that maximizes the likelihood p(x| Mx), where Mk is a model.

- Result: The confusion matrix for classification with hidden Markov Models.

Predictions (in %)

Prosthetic Valve Tissue Graft Valve

Prosthetic Valve 88% 12%
Tissue Graft Valve 27% /3%

Labels
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