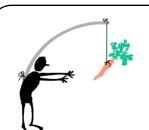
Multivariate Conditional Anomaly Detection and Its Clinical Application

Charmgil Hong (Academic advisor: Milos Hauskrecht) / charmgil@cs.pitt.edu / Department of Computer Science, University of Pittsburgh



Introduction

- Motivation from the clinical domain [James '13]
- Preventable Medical errors are estimated to be approx. 210k-440k patients/year
- · This is the third leading causes of death in America
- Motivation from existing computer-based decision supporting systems
- (1) Knowledge-driven approach
- A number of solutions exist; primarily built by medical/clinical experts
- These solutions are usually very expensive and their coverage is rather incomplete
- e.g. A Bayesian network for liver disorder diagnosis [Onisko et al. '99]

Classifier Chains

- (2) Data-driven approach*
- Medical errors can be thought as statistical anomalies based on past clinical data stored in electronic medical record (EMR) systems
- Cases requiring medical attention for reconsideration could be identified by detecting anomalies in patient care patterns

Approach

Phase 1: Multi-dimensional Data Modeling of Clinical Records

- Objective:
- Model a conditional joint distribution P(y|x) of clinical actions $y = \{y_1, ..., y_d\}$ (output) given patient condition $\mathbf{x} = \{x_1, ..., x_m\}$ (input)
- Learn a function that assigns to each patient condition x, the most probable (MAP; maximum a posteriori) assignment of the clinical actions y
- Challenge: The number of all possible class assignments is exponential in $d = |\mathbf{Y}|$

Conditional Tree-structured

Solutions (* indicates our contributions)

Binary Relevance Model **Bayesian Networks** (BR) [Boutell et al. '04] (CC) [Read et al. '09] (CTBN) [Batal et al. '13] * Graphical Representation Y_2 \mathbf{Y}_3 Y_4 (e.g., d = 4) $P(\mathbf{Y}|\mathbf{X}) = \prod P(Y_i|\mathbf{X}, \pi(Y_i))$ Mathematical Representation $\pi(Y_i)$ = all preceding labels $\pi(Y_i)$ = at most one $\pi(Y_i) = \{\}$ parent label (tree) (chain) Optimal tree structures · Theoretically, CC does are learned efficiently not lose any class Structure learning is not Strength **Exact MAP inference** dependency (.. chain required (fast) can be performed in a rule) linear time (Max-sum) · Learning the optimal BR disregards all the structure is NP-hard The dependency can be class dependencies Weakness learned is limited to a Exact MAP inference is It is a simple collection tree structure NP-hard of marginal models · A greedy approx. is used Mixtures-of-CTBNs Multi-label Mixtures-of-Experts Mixture (MLME) [Hong et al. '15] * (MC) [Hong et al. '14] Graphical $CC M_I$ Representation CTBN T_1 (e.g., d = 4) Gating $P(\mathbf{y}|\mathbf{x}) = \sum \lambda_k \prod_{i=1}^{n} P(y_i|\mathbf{x}, \pi(y_i, T_k))$ $P(\mathbf{y}|\mathbf{x}) = \sum_{i} g_k(\mathbf{x}) \prod_{i} P(y_i|\mathbf{x}, \boldsymbol{\pi}(y_i, M_k))$ Mathematical Representation λ_k : (fixed) weight of the k-th model $g_k(\mathbf{x})$: weight of the k-th model given \mathbf{x} Can have multiple dependency - Can take any of BR, CTBN, CC as Strength the base structures structures Computationally more demanding Only permits CTBNs as the base Weakness Requires to learn the gating function structures along with the k models

Why are the marginal models not enough?

Given the joint probability table below, find the most probable assignment (MAP; maximum a posteriori) of $\mathbf{Y} = (Y_1, Y_2)$

$P(Y_1,Y_2 \mathbf{X}=\mathbf{x})$	$Y_1 = 0$	$Y_1 = 1$	$P(Y_2 \mathbf{X}=\mathbf{x})$
$Y_2 = 0$	0.2	0.45	0.65
$Y_2 = 1$	0.35	0	0.35
$P(Y_1 \mathbf{X}=\mathbf{x})$	0.55	0.45	

- \rightarrow Prediction on the joint (MAP): $Y_1 = 1, Y_2 = 0$
- \rightarrow Prediction on the marginals: $Y_1 = 0$, $Y_2 = 0$

Phase 2: Estimating Anomaly Scores

- Objective
- · Given a trained model and unseen test data, precisely measure the degree of anomaly based on the conformity between the model and test data
- MDC models transform the data into probabilistic estimations
- Proper estimation of anomaly score on these probabilities will let us correctly identify the anomalous clinical actions
- Caveat: Blindly picking the minimum probability will not satisfy our needs; E.g., prescriptions with alternative drugs
- Solutions

	Quantities Involved in Scoring	Scoring Scheme	
Univariate Approach	$P(\mathbf{y} \mathbf{x})$	 The complementary probability Score₁ = 1 - P(y x) Rank percentile of the probability Score₂ = Rank[P(y x)] / N_{test} 	
Multivariate Approach	$P(y_i \mathbf{x})$ ** We denote $\boldsymbol{\phi}$ $= \{P(y_i \mathbf{x}) : i=1,,d\}$	• Robust Mahalanobis Distance [Rousseeuw and Zomeren '90] $Score_3 = rd(P(y_i \mathbf{x}): i=1,,d) \\ = (\boldsymbol{\phi} - \boldsymbol{\mu}) \cdot M^{-1}(\boldsymbol{\phi} - \boldsymbol{\mu})$ • M : minimum covariance determinant (MCD) $\boldsymbol{\mu}$: mean of $\boldsymbol{\phi} = \{P(y_i \mathbf{x}): i=1,,d\}$ over test data • $\mathbf{L}_{\mathbf{X}}$ norms (\mathbf{L}_{1} , \mathbf{L}_{2} , \mathbf{L}_{\max}) $Score_4 = 1 - \boldsymbol{\phi} _1$ $Score_5 = 1 - \boldsymbol{\phi} _2$ $Score_6 = 1 - \boldsymbol{\phi} _{\max}$	
Multivariate Conditional Approach	$P(y_i \mathbf{x}), \mathbf{x}$	 One-class SVM [Schölkopf et al. '99] Support Vector Data Description [Tax and Duin '04] 	

 Using these schemes as basic building blocks, we are working on new anomaly scoring techniques

Experimental results

- Data: Progress notes obtained from Cincinnati Children's Hospital Medical Center [Pestian et al. '07]
- 978 Instances (patients)
- X: 1,449 features; Freehand notes in the bag-of-words representation
- Y: 45 binary classes; Indicating the diseases diagnosed

- Compared methods:
- 1) Modified Classifier Chain + Robust Mahalanobis (CC.mod+RDist)
- 2) Conditional Tree BN + Robust Mahalanobis (CTBN+RDist)
- 3) Binary relevance + complementary probability (BR+comP)
- 10-fold cross validation; On each round, 15% of randomly selected test data are perturbed (anomalies) by flipping 1-5 class labels
- Anomalies represent mistaken diagnoses
- Metric: Area under an ROC curve (AUC)

