
 Multivariate Conditional Anomaly Detection and Its Clinical Application 
  Charmgil Hong (Academic advisor: Milos Hauskrecht) / charmgil@cs.pitt.edu / Department of Computer Science, University of Pittsburgh
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            Approach

· Motivation from the clinical domain [James ‘13]

  · Preventable Medical errors are estimated to be 
approx. 210k-440k patients/year

  · This is the third leading causes of death in 
America

(2) Data-driven approach*

· Medical errors can be thought as statistical 
anomalies based on past clinical data stored in 
electronic medical record (EMR) systems

· Cases requiring medical attention for 
reconsideration could be identified by detecting 
anomalies in patient care patterns

  (1) Knowledge-driven approach

  · A number of solutions exist; primarily built by 
medical/clinical experts

  · These solutions are usually very expensive and 
their coverage is rather incomplete

  · e.g. A Bayesian network for liver disorder 
diagnosis [Onisko et al. ’99]

· Motivation from existing computer-based decision supporting systems

· Objective: 
  · Model a conditional joint distribution P(y|x) of clinical actions y = {y1, ..., yd} (output) 

given patient condition x = {x1, ..., xm} (input)

  · Learn a function that assigns to each patient condition x, the most probable (MAP; 
maximum a posteriori) assignment of the clinical actions y

· Challenge: The number of all possible class assignments is exponential in d = |Y|

· Solutions (✱ indicates our contributions)

Phase 1: Multi-dimensional Data Modeling of Clinical Records

Model Binary Relevance
(BR) [Boutell et al. ’04]

Conditional Tree-structured 
Bayesian Networks

(CTBN) [Batal et al. ’13]

Classifier Chains 
(CC) [Read et al. ’09]

Graphical 
Representation

(e.g., d = 4)

Mathematical 
Representation

π(Yi) = {} π(Yi) = at most one
 parent label (tree)

π(Yi) = all preceding labels 
(chain)

Strength · Structure learning is not 
required (fast)

· Optimal tree structures 
are learned efficiently

· Exact MAP inference 
can be performed in a 
linear time (Max-sum)

· Theoretically, CC does 
not lose any class 
dependency (∵ chain 
rule)

Weakness
· BR disregards all the 

class dependencies
· It is a simple collection 

of marginal models

· The dependency can be 
learned is limited to a 
tree structure

· Learning the optimal 
structure is NP-hard

· Exact MAP inference is 
NP-hard

  · A greedy approx. is used
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Phase 2: Estimating Anomaly Scores

Mixture Mixtures-of-CTBNs
(MC) [Hong et al. ’14]

Multi-label Mixtures-of-Experts
(MLME) [Hong et al. ’15]

Graphical 
Representation

(e.g., d = 4)

Mathematical 
Representation

λk: (fixed) weight of the k-th model gk(x): weight of the k-th model given x

Strength · Can have multiple dependency 
structures

· Can take any of BR, CTBN, CC as 
the base structures

Weakness · Only permits CTBNs as the base 
structures

· Computationally more demanding
  · Requires to learn the gating function 

along with the k models
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· Data: Progress notes obtained from Cincinnati 
Children's Hospital Medical Center [Pestian et al. ‘07]

  · 978 Instances (patients)

  · X: 1,449 features; Freehand notes in the bag-of-words 
representation

  · Y: 45 binary classes; Indicating the diseases diagnosed

· Compared methods:
    1) Modified Classifier Chain + Robust Mahalanobis (CC.mod+RDist)

    2) Conditional Tree BN + Robust Mahalanobis (CTBN+RDist)

    3) Binary relevance + complementary probability (BR+comP)

· 10-fold cross validation; On each round, 15% of 
randomly selected test data are perturbed (anomalies) 
by flipping 1-5 class labels

  · Anomalies represent mistaken diagnoses

· Metric: Area under an ROC curve (AUC)

· Why are the marginal models not enough?
   Given the joint probability table below, find the most probable 

assignment (MAP; maximum a posteriori) of Y = (Y1,Y2)

        → Prediction on the joint (MAP): Y1 = 1, Y2 = 0

        → Prediction on the marginals: Y1 = 0, Y2 = 0

P(Y1,Y2|X=x) Y1 = 0 Y1 = 1 P(Y2|X=x)

Y2 = 0 0.2 0.45 0.65

Y2 = 1 0.35 0 0.35

P(Y1|X=x) 0.55 0.45

Quantities 
Involved in 

Scoring
Scoring Scheme

Univariate 
Approach P(y|x)

· The complementary probability 
    Score1 = 1 - P(y|x)

· Rank percentile of the probability 
    Score2 = Rank[P(y|x)] / Ntest

Multivariate 
Approach

P(yi|x) 

** We denote 𝝓  

= {P(yi|x) : i=1,…,d}

· Robust Mahalanobis Distance 
[Rousseeuw and Zomeren ‘90] 
    Score3 = rd(P(yi|x) : i = 1,…,d)  
                = (𝝓 - µ)’M-1(𝝓 - µ) 

    · M: minimum covariance determinant (MCD)  
  µ: mean of 𝝓 = {P(yi|x) : i=1,…,d} over test data

· Lx norms (L1, L2, Lmax) 
    Score4 = ||1 - 𝝓||1 

    Score5 = ||1 - 𝝓||2 

    Score6 = ||1 - 𝝓||max

Multivariate 
Conditional 
Approach

P(yi|x), x
· One-class SVM [Schölkopf et al. ‘99]

· Support Vector Data Description [Tax 

and Duin ‘04]

  · Using these schemes as basic building blocks, we are working 
on new anomaly scoring techniques 

· Objective
  · Given a trained model and unseen test data, precisely measure 

the degree of anomaly based on the conformity between the 
model and test data

    · MDC models transform the data into probabilistic estimations

    · Proper estimation of anomaly score on these probabilities will let us 
correctly identify the anomalous clinical actions

· Caveat: Blindly picking the minimum probability will not 
satisfy our needs; E.g., prescriptions with alternative drugs

· Solutions


