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· Multi-label classification (MLC)
  · In traditional classification settings, a data 

instance is associated with a single class variable

  · However, in many real-world problems, it is more 
natural to see that each data instance can be 
associated with multiple class variables

  · Multi-label Classification (MLC) is the supervised 
learning problem that formulates such situations

  · Examples of MLC

· Problem definition
  · We want to learn a function h from multi-label data 

that h maps m-dimensional feature (input) X = {X1, 
…, Xm} to the maximum a posteriori assignment of 
class variables (output) Y = {Y1, …, Yd}: 
 

· One solution to MLC is to exploit the 
dependency relation among class variables

  · By explicitly modeling the dependency among 
class variable, we can effectively solve MLC

  · By assuming the dependency relation forms a 
chain or tree structure, we can derive efficient 
solutions [Read et al. ’09; Batal et al. ’13]

· What if there exist more complex relations?
  · The relations among features and class variables 

may change across a dataset

  · Existing methods may not be sufficient as they are 
designed to capture a fixed dependency relation

· Examples of such complex relations can be 
found in many applications

  · In semantic image tagging, an image of a cat can 
be tagged as {cat, pet} or {cat, wild animal} 
according to its context

  · In medicine, patients suffering from the same 
disease may receive different sets of medications 
due to their medical history or allergic reactions

· Our key contributions
  · We provide a unified perspective, Classifier Chains 

Family, which generalizes existing MLC methods, 
including [Read et al. ’09; Batal et al. ’13; Boutell et al. ’04]

  · We present a new ensemble approach that 
incorporates the models in Classifier Chain Family 
using the mixtures-of-experts [Jacobs et al. ’91] framework

      · It is a generalization of our previous work: Mixtures-of-
Conditional Tree-structured Bayesian Networks [Hong et al. ’14]

· Classifier Chains Family (CCF)
  · CCF is a family of structured MLC models, that 

decompose the multivariate class posterior 
distribution P(Y|X) using a product of the posteriors 
over individual class variables as: 
 
 
where Yπ(i, M) denotes the parent classes of class 
variable Yi defined by model M

  · By specifying particular structural assumptions, we 
can instantiate classifier chains [Read et al. ’09], 
conditional tree-structured Bayesian networks [Batal 

et al. ’13], or binary relevance [Boutell et al. ’04]

· Multi-Label Mixtures-of-Experts (ML-ME)

  (ML-ME1) Representation

  · ML-ME defines the multivariate posterior 
distribution of class vector y = (y1, …, yd) by 
combining multiple MLC models that belong to 
classifier chains family (CCF): 
 
 
 
 
where P(y|x, Mk) = ∏d

i =1 P(yi|x, yπ(i, Mk)) is the joint 
conditional distribution defined by the k-th CCF 
model; and gk(x) = P(Mk|x) is the gate reflecting 
how much Mk contributes towards prediction

      · We model the gate using the Softmax function  
 

  · ML-ME can be graphically represented (e.g., d =4)

  (ML-ME2) Parameter Learning

  · By assuming the individual CCF structures are 
known and fixed, we derive an EM algorithm that 
optimizes the parameters of ML-ME

  · Objective: Optimize the log-likelihood of the 
training data (Θ denotes the model parameters;  
n denotes the instance index)

Model Binary Relevance
(BR) [Boutell et al. ’04]

Cond. Tree-struct. 
Bayesian Networks
(CTBN) [Batal et al. ’13]

Classifier Chains 
(CC) [Read et al. ’09]

Graphical 
Notation

(e.g., d = 4)

Structural 
Assumption π(i,M) = {}

π(i,M) = at most 
one parent label 

(tree)

π(i,M) = all 
preceding labels 

(chain)
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· Data 

      · N: number of instances, m: number of features, d: number of 
classes, LC: label cardinality, DLS: distinct label set

      · Source: http://mulan.sourceforge.net and http://
cse.seu.edu.cn/people/zhangml/Resources.htm

· Methods
  · CTBN [Batal et al. ’13] vs. M-CTBN (our mixture)

  · CC/ECC [Read et al. ’09], PCC/EPCC [Dembczynski et al. ’10] 
vs. M-CC (our mixture)

· We perform ten-fold cross validation 

· Exact Match Accuracy (EMA)
  · EMA measures the ratio of test instances whose 

prediction is exactly the same as their true class 
vector (higher is better)

  · CTBN vs. M-CTBN

  (ML-ME2) Parameter Learning (cont’d)

  · By introducing a hidden variable z(n) ∈ {1, …, K} 
for each instance (x(n), y(n)), rewrite the objective 
function as the complete log-likelihood: 
 

  · Optimize the complete log-likelihood using EM
      · E-step: Compute the expectation of z(n)  

 

      · M-step: Learn the gate and CCF model parameters 
 
 
 

  (ML-ME3) Structure Learning

  · To obtain useful structures for learning a mixture 
from data, we take a boosting-style approach

      · Add new CCF structures one by one to the mixture being 
trained;  On each iteration, learn a structure by focusing on 
“hard” instances (the current  mixture tends to misclassify)

      · Use the normalized prediction error as the instance weights 
(      denotes the current mixture): 
 

      · Next CCF model optimizes the weighted conditional log-
likelihood (WCLL) of data (refer our paper for details)

  (ML-ME4) Prediction

  · We search the space of class assignments by 
defining a Markov chain induced by local changes 
to individual class assignments

      · Our search is initialized using the MAP prediction from each 
CCF model in the mixture

      · The annealed MAP (maximum a posteriori) [Yuan et al. ’04] 
approach is applied to speed up the search

· Conditional Log-likelihood Loss (CLL-loss)
  · CLL-loss measures the model fitness by evaluating 

how much probability mass is given to the true 
class vector (lower is better)

Gate; optimize using the 
L2-regularized L-BFGS*

Base models; train K CCF models 
using hk(n) as instance weights

* L-BFGS [Liu & Nocedal ’89]

Dataset N m d LC DLS Domain
Image 2,000 135 5 1.24 20 image

Emotions 593 72 6 1.87 27 music
Yeast 2,417 103 14 4.24 198 biology

Medical 978 1,449 45 1.25 94 text

· Exact Match Accuracy (EMA) (cont’d)
  · CC, PCC, ECC, EPCC vs. M-CTBN


