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Motivation

• Traditional classification
• Each data instance is associated with a single class variable
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Motivation

• Multi-dimensional classification 
• In many real-world applications, each data instance can be 

associated with multiple class variables

• Examples

• A news article may cover multiple topics such as politics 
and economy

• An image may include multiple objects as building, road and 
car

• A gene may be associated with several biological functions
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Motivation

• Multi-dimensional classification 
• Each data instance is associated with multiple class 

variables

• Objective: assign to each instance the most probable 
assignment of the class variables
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Class 1 ∈ { red, blue }
Class 2 ∈ {    ,     ,     }



Motivation

• Simplest solution
• Learning d independent classifiers for d class labels

• It does not capture the dependency relations between the 
classes
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CTBN
• Conditional Tree-structured Bayesian Network (CTBN) 

for modeling P(Y1, ...,Yd|X)
• Each class variable can have at most one other class variable 

as a parent (the classes form a directed tree)

• The feature vector X is the common parent for all class 
variables
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CTBN
• Conditional Tree-structured Bayesian Network (CTBN) 

for modeling P(Y1, ...,Yd|X)
• Each class variable can have at most one other class variable 

as a parent (the classes form a directed tree)

• The feature vector X is the common parent for all class 
variables

• We restrict the dependency structure to a tree 
because:

1. The optimal structure can be learned efficiently (coming up)

2. Exact inference can be done in O(d) time (please refer the paper)
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Representation
• The conditional class distribution is:

• It is the product of the dependencies in the network
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An example CTBN

P(Y1|X,Y2)



Representation
• The conditional class distribution is:

• It is the product of the dependencies in the network
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Representation
• The conditional class distribution is:

• It is the product of the dependencies in the network

• Each P(yi | x, yπ(i,T)) is represented by classifier functions.
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X

Y1 Y2 Y3 Y4

f1,0(X) = P(Y1|X,Y2 = 1)

f1,v(X) = P(Y1|X,Y2 = v)

. . .

For each class Yi, we learn a different probabilistic classifier 
for each possible value v of the parent class

Y2 ∈ {1, ..., v}



Structure learning
• Objective:  Find the tree structure that best approximates 

P(Y|X), i.e., that maximizes the conditional log-likelihood of 
data

• Idea:  Cast the learning into the maximum branching tree 
problem

• Next:  illustration through the example CTBN
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Structure learning
1. Define a complete weighted directed graph G
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Structure learning
1. Define a complete weighted directed graph G

•  Draw d nodes for all class variables Yi : i ∈ {1, ..., d}
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Structure learning
1. Define a complete weighted directed graph G

•  Draw d nodes for all class variables Yi : i ∈ {1, ..., d}
•  Connect all the node pairs and add self-loops with 
directed edges
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Structure learning
2. Compute the edge weights using conditional log-likelihood 

of the data: 
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Structure learning
3. Compute the edge weights using conditional log-likelihood 

of the data: 
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Structure learning
4. Find the tree that maximizes the sum of the edge weights 
by solving the maximum branching problem
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Structure learning
5. Add a node for X as the common parent for all classes

Y1 Y2 Y3 Y4

X



Experiments

• Compared methods
• Binary Relevance (BR) [Boutell et al., ’04, Clare et al., ’01]

• Classification with heterogeneous features (CHF) [Godbole and 
Sarawagi, ’04]

• Multi-label k-nearest neighbor (MLKNN) [Zhang and Zhou, ’07]

• Instance-based learning by logistic regression (IBLR) [Cheng and 
Hüllermeier, ’09]

• Classifier chains (CC) [Read et al., ’09]

• Maximum margin output coding (MMOC) [Zhang and Schneider, ’12]
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Experiments
• Data

• 10 publicly available datasets from different domains

Dataset # Instances # Features # Classes Domain
Emotions 593 72 6 Music

Yeast 2,417 103 14 Biology

Scene 2,407 294 6 Image

Enron 1,702 1,001 53 Text

TMC 2007 28,596 30,438 22 Text

RCV1_subset1 6,000 8,394 10 Text

RCV1_subset2 6,000 8,304 10 Text

RCV1_subset3 6,000 8,328 10 Text

RCV1_subset4 6,000 8,332 10 Text

RCV1_subset5 6,000 8,367 10 Text
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Experiment Results
• Exact Match Accuracy

The probability of all classes being predicted correctly (higher is better)
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Dataset BR CHF MLKNN IBLR CC MMOC CTBN
Emotions 0.266 0.315 0.283 0.332 0.272 0.336 0.335

Yeast 0.147 0.162 0.179 0.204 0.194 0.214 0.195
Scene 0.521 0.160 0.629 0.644 0.633 0.684 0.626
Enron 0.162 0.169 0.078 0.163 0.173 0.168
TMC 0.315 0.322 0.165 0.316 0.323 0.329

RCV1_subset1 0.278 0.357 0.205 0.279 0.429 0.448
RCV1_subset2 0.42 0.466 0.288 0.417 0.517 0.531
RCV1_subset3 0.442 0.485 0.327 0.446 0.54 0.561
RCV1_subset4 0.494 0.532 0.354 0.491 0.579 0.59
RCV1_subset5 0.412 0.457 0.276 0.411 0.497 0.538

#win-tie-loss 9-1-0 8-2-0 7-3-0 9-1-0 6-4-0 0-1-2



Experiment Results
• Normalized conditional log-likelihood loss

Negative log-likelihood normalized on each dataset (lower is better)
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Conclusion

• We proposed a novel probabilistic approach to multi-
dimensional classification

• CTBN encodes the conditional dependence relations 
between classes

• Efficient structure learning and exact inference algorithms are 
presented

• Our approach outperforms several state-of-the-art methods
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