An Efficient Probabilistic Framework for Multi-Dimensional Classification

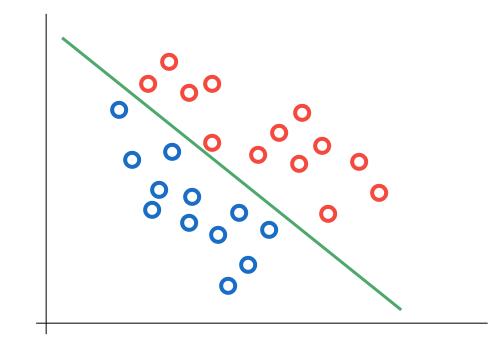
Iyad Batal

Charmgil Hong

Milos Hauskrecht

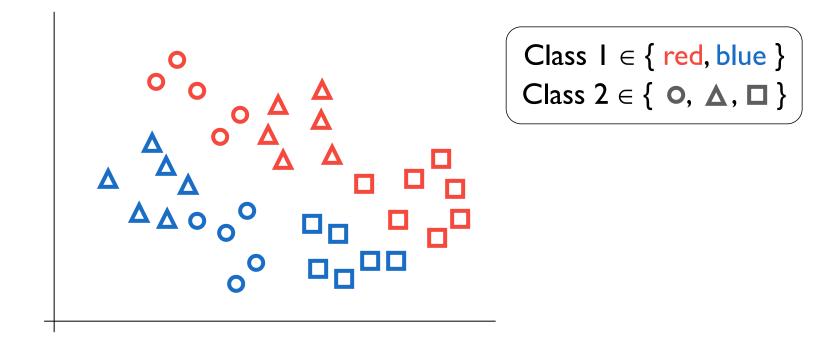
Department of Computer Science University of Pittsburgh

- Traditional classification
 - Each data instance is associated with a single class variable



- Multi-dimensional classification
 - In many real-world applications, each data instance can be associated with multiple class variables
 - Examples
 - A news article may cover multiple topics such as *politics* and *economy*
 - An image may include multiple objects as *building*, *road* and *car*
 - A gene may be associated with several biological functions

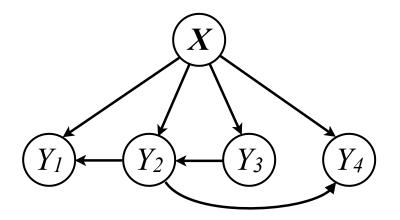
- Multi-dimensional classification
 - Each data instance is associated with multiple class variables
 - Objective: assign to each instance the most probable assignment of the class variables



- Simplest solution
 - Learning *d* independent classifiers for *d* class labels
 - It does not capture the dependency relations between the classes

CTBN

- Conditional Tree-structured Bayesian Network (CTBN) for modeling $P(Y_1, ..., Y_d | X)$
 - Each class variable can have at most one other class variable as a parent (the classes form a directed tree)
 - The feature vector X is the common parent for all class variables



An example CTBN

CTBN

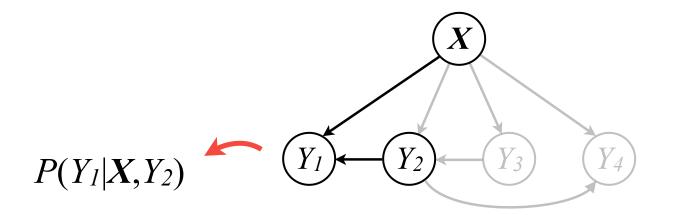
- Conditional Tree-structured Bayesian Network (CTBN) for modeling P(Y₁, ..., Y_d|X)
 - Each class variable can have at most one other class variable as a parent (the classes form a directed tree)
 - The feature vector X is the common parent for all class variables
- We restrict the dependency structure to a tree because:
 - I. The optimal structure can be learned efficiently (coming up)
 - 2. Exact inference can be done in O(d) time (please refer the paper)

Representation

The conditional class distribution is:

$$P(y_1, \dots, y_d | \mathbf{x}) = \prod_{i=1}^d P(y_i | \mathbf{x}, y_{\pi(i,T)})$$

- the parent of y_i in CTBN T
- It is the product of the dependencies in the network



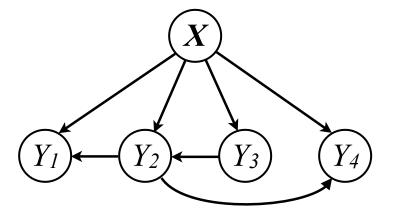
An example CTBN

Representation

The conditional class distribution is:

$$P(y_1, ..., y_d | \mathbf{x}) = \prod_{i=1}^d P(y_i | \mathbf{x}, y_{\pi(i,T)})$$

• It is the product of the dependencies in the network



This network represents $P(y_1, y_2, y_3, y_4 | \mathbf{x}) = P(y_3 | \mathbf{x}) \cdot P(y_2 | \mathbf{x}, y_3) \cdot P(y_1 | \mathbf{x}, y_2) \cdot P(y_4 | \mathbf{x}, y_2)$

the parent of y_i

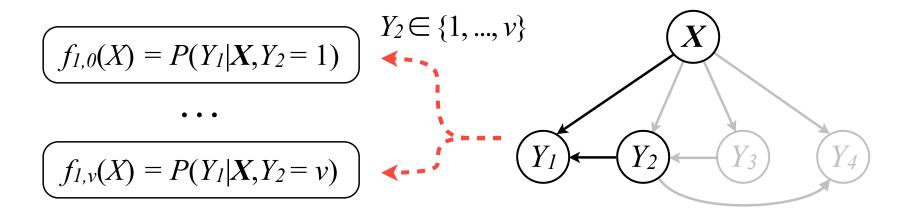
in CTBN T

Representation

• The conditional class distribution is:

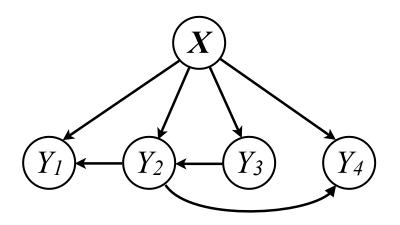
$$P(y_1, ..., y_d | \mathbf{x}) = \prod_{i=1}^d P(y_i | \mathbf{x}, y_{\pi(i,T)})$$

- It is the product of the dependencies in the network
- Each $P(y_i | x, y_{\pi(i,T)})$ is represented by classifier functions.



For each class Y_i , we learn a different probabilistic classifier for each possible value v of the parent class

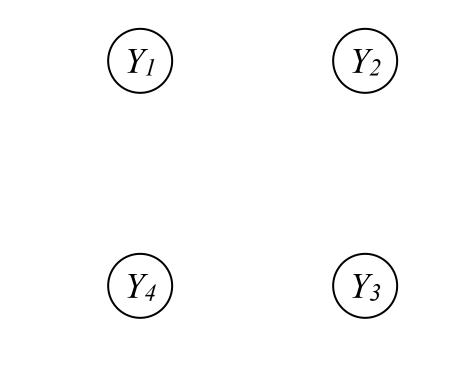
- Objective: Find the tree structure that best approximates P(Y|X), i.e., that maximizes the conditional log-likelihood of data
- Idea: Cast the learning into the maximum branching tree problem
- Next: illustration through the example CTBN



I. Define a complete weighted directed graph G

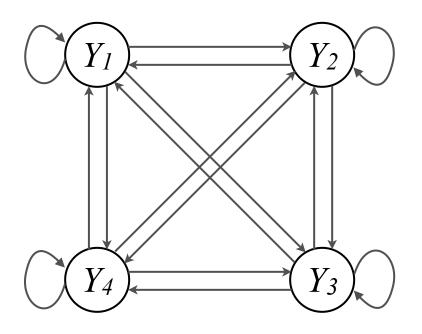
I. Define a complete weighted directed graph G

• Draw d nodes for all class variables $Y_i: i \in \{1, ..., d\}$

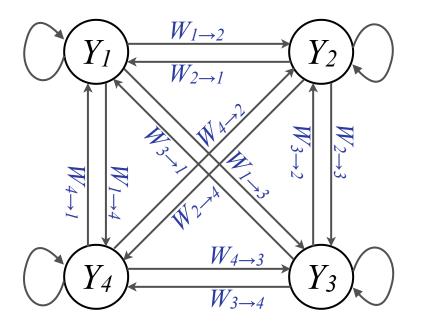


I. Define a complete weighted directed graph G

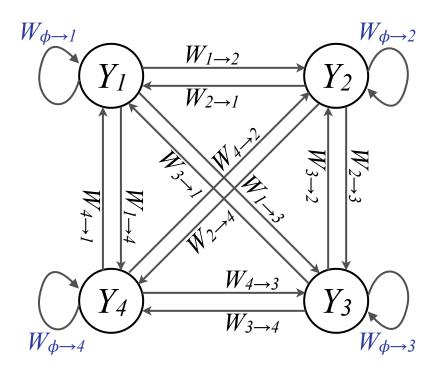
- Draw d nodes for all class variables $Y_i: i \in \{1, ..., d\}$
- Connect all the node pairs and add self-loops with directed edges



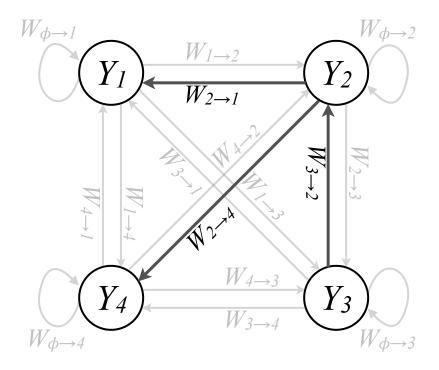
2. Compute the edge weights using conditional log-likelihood of the data: $W_{j \to i} = \sum_{(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \in D} log P(y_i^{(k)} | \mathbf{x}^{(k)}, y_j^{(k)})$



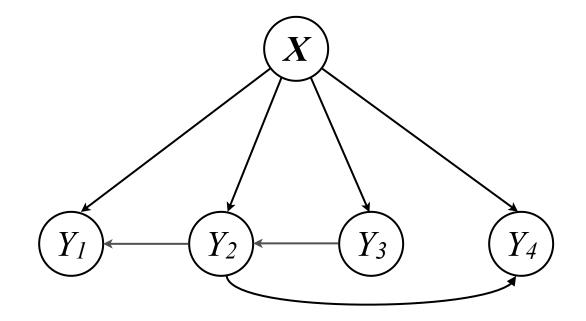
3. Compute the edge weights using conditional log-likelihood of the data: $W_{\phi \to i} = \sum_{(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \in D} log P(y_i^{(k)} | \mathbf{x}^{(k)})$



4. Find the tree that maximizes the sum of the edge weights by solving the maximum branching problem



5.Add a node for X as the common parent for all classes



Experiments

- Compared methods
 - Binary Relevance (BR) [Boutell et al., '04, Clare et al., '01]
 - Classification with heterogeneous features (CHF) [Godbole and Sarawagi, '04]
 - Multi-label k-nearest neighbor (MLKNN) [Zhang and Zhou, '07]
 - Instance-based learning by logistic regression (IBLR) [Cheng and Hüllermeier, '09]
 - Classifier chains (CC) [Read et al., '09]
 - Maximum margin output coding (MMOC) [Zhang and Schneider, '12]

Experiments

- Data
 - 10 publicly available datasets from different domains

Dataset	# Instances	# Features	# Classes	Domain	
Emotions	593	72	6	Music	
Yeast	2,417	103	14	Biology	
Scene	2,407	294	6	Image	
Enron	I,702	1,001	53	Text	
TMC 2007	28,596	30,438	22	Text	
RCVI_subset1	6,000	8,394	10	Text	
RCVI_subset2	6,000	8,304	10	Text	
RCVI_subset3	6,000	8,328	10	Text	
RCVI_subset4	6,000	8,332	10	Text	
RCVI_subset5	6,000	8,367	10	Text	

Experiment Results

• Exact Match Accuracy

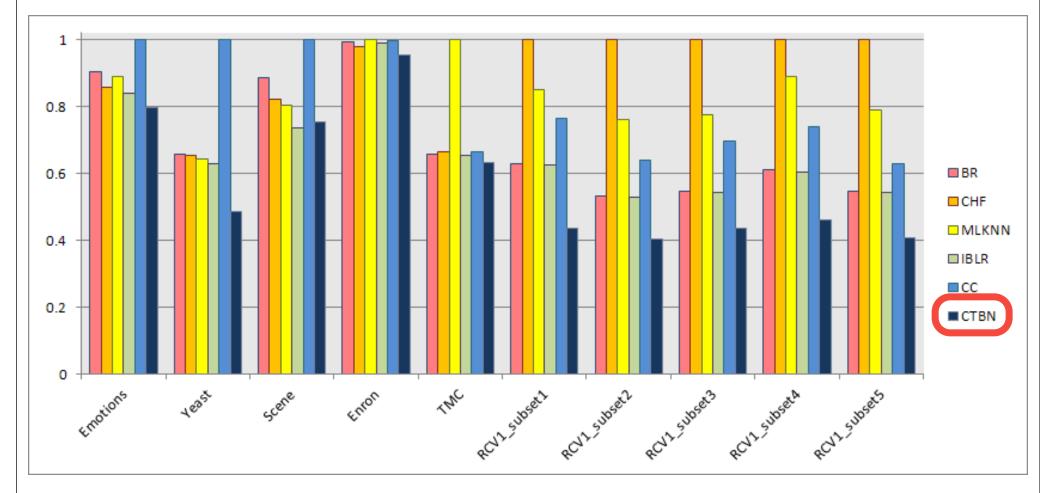
The probability of all classes being predicted correctly (higher is better)

Dataset	BR	CHF	MLKNN	IBLR	CC	MMOC	CTBN
Emotions	0.266	0.315	0.283	0.332	0.272	0.336	0.335
Yeast	0.147	0.162	0.179	0.204	0.194	0.214	0.195
Scene	0.521	0.160	0.629	0.644	0.633	0.684	0.626
Enron	0.162	0.169	0.078	0.163	0.173		0.168
TMC	0.315	0.322	0.165	0.316	0.323		0.329
RCVI_subset1	0.278	0.357	0.205	0.279	0.429		0.448
RCVI_subset2	0.42	0.466	0.288	0.417	0.517		0.531
RCVI_subset3	0.442	0.485	0.327	0.446	0.54		0.561
RCVI_subset4	0.494	0.532	0.354	0.491	0.579		0.59
RCV1_subset5	0.412	0.457	0.276	0.411	0.497		0.538
#win-tie-loss	9-1-0	8-2-0	7-3-0	9-1-0	6-4-0	0-I-2	

Experiment Results

Normalized conditional log-likelihood loss

Negative log-likelihood normalized on each dataset (lower is better)



Conclusion

- We proposed a novel probabilistic approach to multidimensional classification
 - CTBN encodes the conditional dependence relations
 between classes
 - Efficient structure learning and exact inference algorithms are presented
 - Our approach outperforms several state-of-the-art methods