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Motivation

• Reports from medical/clinical surveys

• The occurrence of medical errors remains a persistent and critical 
problem

• Medical errors that correspond to preventable adverse events are 
estimated to be up to 440k patients each year [James 2013]

• This is the third leading cause of death in America
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Captured from: http://www.forbes.com/sites/leahbinder/2013/09/23/stunning-news-on-preventable-deaths-in-hospitals/ (left) and 
http://www.hospitalsafetyscore.org/newsroom/display/hospitalerrors-thirdleading-causeofdeathinus-improvementstooslow (right)



Motivation

• Computer-based approaches to support clinical decisions

(1) Knowledge-driven approach

• Based on the rules or decision structures that are manually 
designed by human experts

• E.g., Liver disorder diagnosis network [Onisko et al. 1999]

• Expensive to build and maintain

• Coverages are often incomplete
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Motivation

• Computer-based approaches to support clinical decisions

(2) Data-driven approach

• An application of data mining and statistical machine learning 
techniques

• Based on the rules or decision structures that are automatically 
built by algorithms

• More affordable to build and maintain

• Coverages can be continuously improved along with the 
availability of data and techniques
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Our Goal

• We aim at developing a clinical decision support system 
that can automatically detect erroneous clinical actions

• Cases requiring clinical attention for reconsideration could be 
identified by detecting statistical anomalies in patient care 
patterns [Hauskrecht et al. 2007, 2013]

• We want to identify clinical decisions that do not conform 
with past records

• Virtually every hospital runs its own electronic medical record 
(EMR) system, to which our system can be applied
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Our Approach

• A 2-phase approach

• Phase 1: Multi-dimensional data modeling

• We model the clinical data stored in electronic medical record 
(EMR) systems

• Phase 2: Model-based anomaly detection

• Using the model obtained in phase 1, we identify possibly 
erroneous clinical decisions and actions
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Phase 1: Multi-dimensional data modeling

• Setting:  We are given a collection of EMRs D = {x(n), y(n)} 

• A feature vector x(n) = (x1, …, xm  ) of m continuous values that 
represents an observation (patient condition)

• A decision vector y(n) = (y1, …, yd   ) of d discrete values that 
represents the clinical decisions made on x(n)

• For simplicity, this presentation will focus only on the binary 
decision cases

• Objective:  We want to accurately and efficiently learn a 
compact model of complex clinical data

• Challenge: both x and y are high-dimensional
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Phase 1: Multi-dimensional data modeling

• The multi-dimensional classification (MDC) problem 
formulates this kind of modeling situations [Zhang and Zhou 2013]

• In MDC, we want to learn a function that assigns to each 
observation (patient), represented by its feature vector x, the 
most probable assignment of the decisions (clinical actions) y

• Assuming the 0-1 loss function, the optimal function h* maps 
an observation to the maximum a posterior (MAP) assignment 
of the decisions
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A Simple MDC Solution: d Independent Models

• Idea [Clare and King 2001; Boutell et al. 2004]

• Transform an MDC problem to multiple single-label 
classification problems

• Learn d independent classifiers for d decision variables

• Illustration

10

Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 1 1 0
n=2 0.6 0.2 1 1 0
n=3 0.1 0.9 0 0 1
n=4 0.3 0.1 0 0 0
n=5 0.8 0.9 1 0 1

h1 :  X → Y1

h2 :  X → Y2

h3 :  X → Y3



A Simple MDC Solution: d Independent Models

• Advantage

• Computationally very efficient

• Disadvantage

• Not suitable for our objective

• Does not find the most probable assignment

• Instead, it maximizes the marginal distribution of each 
decision variable

• Does not capture the correlations among the decision variables

• Clinical decisions often show correlations

• E.g., a set of medications in relations
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Examples: Correlations in Clinical Decisions

• A set of medications in relations

• Medications that are usually prescribed together

• Alternative medications that only one of them is prescribed

• Adverse medications that should not be prescribed together
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Examples: Correlations in Clinical Decisions

• Correlations among medications
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Examples: Correlations in Clinical Decisions

• Correlations among medications
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Examples: Correlations in Clinical Decisions

• Learning the correlation structure in clinical decisions is 
the key to facilitate the clinical data modeling!
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Learning Correlations in Multiple Decisions with CC

• Classifier Chains (CC) [Read et al. 2009]

• Represents the chain rule of the probability, conditioned on 
observations

• On m variables of patient condition and d decision variables, CC 
defines the joint probability P(Y1, …, Yd|X) as:
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Learning of Multiple Decisions with CC

• Learning of CC

• Using the decomposition along the “chain,” the distribution of each 
decision Yi is modeled using a probabilistic function (e.g., logistic 
regression)
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Prediction of Multiple Decisions with CC

• Prediction with CC

• Make a prediction on each decision variable Yi along the chain 
order; use the predictions of the preceding decisions as 
observations (in addition to x) for the following chains
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Y1 Y2 Y3 Yd...

X
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Q: What if a prediction is wrong? Error propagates
Q: Does X have the same predictability towards Y1, … Yd? 

Chain order matters



Contribution 1: Algorithmic enhancement [Hong et al. 2015]

• An issue with CC

• The order in {Y1,…,Yd} actually affects the model and 
prediction accuracy

• Knowing a proper ordering of chain is desired

• However, the size of structure space is extremely large (d!)

• Solution: CC.algo

• A greedy structure learning algorithm that picks the chain order

• Performs very well in practice
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Contribution 2: Structural modification [Batal et al. 2013]

• An issue with CC

• CC does not provide “optimal structure” learning

• Greedy prediction algorithm does not produce the exact MAP 
assignment

• The exact MAP assignment on CC takes exponential in d time 
[Dembczynski et al. 2010]

• Solution: CC.tree

• Restrict the correlation structure to be a tree
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An example CC (d=4) An example CC.tree (d=4)



Contribution 3: Mixture extensions [Hong et al. 2014, 2015]

• An issue with CC

• CC cannot fully recover the joint distribution P(Y1,…,Yd|X) in 
practice

• The mixture approaches let us learn multiple CCs and combine 
them to produce more accurate outputs

• Solution: CC.me

• We extended the mixtures-of-experts [Jacobs et al. 1991] framework to solve 
the MDC problem

• Our extension manages multiple correlation structures and 
produces more accurate data models
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Contribution 3: Mixture extensions [Hong et al. 2014, 2015]

• Solution: CC.me
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Phase 1: Experimental Results

• Compared methods

• Independent Models (IM) — baseline

• Classifier Chains (CC) — baseline

• Algorithmic extension (CC.algo)

• Structural extension (CC.tree)

• Mixtures-of-Experts extension (CC.me)
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Phase 1: Experimental Results

• Data: Progress notes obtained from Cincinnati Children's 
Hospital Medical Center [Pestian et al. 2007]

• 978 patient records

• X: 1,449 features; Freehand notes in the bag-of-words representation

• Y: 45 binary classes; Indicating the diseases diagnosed

• Metrics

• Exact match accuracy (EMA):  the probability of all decisions are 
predicted correctly

• Conditional log-likelihood loss (CLL-loss): shows the model fitness to 
the test data

• the sum of negative log-probability on test data given a trained model
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Phase 1: Experimental Results

• Exact match accuracy (EMA; higher is better)
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EMA 0.64 ± 0.08 0.69 ± 0.08 0.69 ± 0.06 0.67 ± 0.08 0.71 ± 0.07
Rank  

(paired t-test α = 0.05) 5 2 2 4 1



Phase 1: Experimental Results

• Conditional log-likelihood loss (CLL-loss; smaller is better)
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CLL-loss 155.9 ± 25.2 151.1 ± 41.4 152.7 ± 35.6 145.4 ± 23.8 133.3 ± 34.8

Rank 
(paired t-test α = 0.05) 3 3 3 2 1



Phase 2: Model-based anomaly detection

• Setting

• We are given a trained model M (using any of models from 
phase 1) and a set of unseen test data Dtest = {x(l), y(l)}    which 
may include anomalous clinical decisions

• Objective

• We want to identify anomalous observations-decisions pairs in 
Dtest using M
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How to properly measure the anomalousness?

• Conventional model-based approach: univariate anomaly 
scoring scheme [Filzmoser et al. 2006]

• Simply consider the joint likelihood P(y|x; M)

• The complementary probability 1 - P(y|x; M) indicates the degree 
of anomalousness of decisions y on patient x
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Our Approach to Score Anomaly

• Our approach: multivariate anomaly scoring scheme

• Given a trained model M and test data Dtest = {x(l), y(l)}

(1) Transform the observations-decisions pairs into a vector of 
probabilistic estimation 𝝓(l) = (P(y1   |x  ; M), …, P(yd    |x    ; M)) 

(2) Properly measure the anomaly score using 𝝓(l)
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Multivariate Anomaly Scoring

• Consider the likelihood 𝝓(l) = (P(y1(l)|x(l); M), …, P(yd(l)|x(l); M)) 
on every decision dimension to score anomaly

• Scoring example: Using the robust distance [Rousseeuw and Zomeren ‘90]

• Scorerd(𝝓(l)) = (𝝓(l) - µ)’M-1(𝝓(l) - µ)  
where M: minimum covariance determinant (MCD)  
           μ: mean of 𝝓 = (P(yi|x) : i = 1, …, d ) over test data

• A variant of the Mahalanobis distance
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Preliminary Results

• Task:  To identify incorrect disease diagnoses

• Data:  Progress notes obtained from Cincinnati Children's 
Hospital Medical Center [Pestian et al. 2007]

• 978 patient records

• X: 1,449 features; Freehand notes in the bag-of-words 
representation

• Y: 45 binary classes; Indicating the diseases diagnosed
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Preliminary Results

• Experiment

• Compared methods

• CC.algo [Hong et al. 2015] + Robust Distance (CC.algo+MV)

• CC.tree [Batal et al. 2013] + Robust Distance (CC.tree+MV)

• Independent model [Clare and King 2001; Boutell et al. 2004] + Robust Distance (IM
+MV)

• Independent model [Clare and King 2001; Boutell et al. 2004] + Complementary 
Probability (IM+UV)

• 10-fold cross validation; on each round, 15% of anomalies are 
injected to the test set by flipping 1-5 decisions

• Metric:  Area under receiver operating characteristic (AUC)
33



Preliminary Results

• Area under receiver operating characteristic (AUC; higher is better)
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Multivariate Anomaly Scoring

• This part is in progress

• We are trying to better understand about the space of the 
conditional likelihood estimate 𝝓 = (P(y1|x; M), …, P(yd|x; M))

• Future work

• Developing robust anomaly scoring schemes that have 
reasonable semantics

• Identifying the root causes of anomalies

• Unifying the phase 1 and 2 into a single optimization 
formulation
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Conclusion

• We are aiming at building clinical decision support systems 
by detecting anomalies in clinical records

• We first model the past clinical data stored in EMRs

• We then use the model to identify anomalies that contains the 
clinical decisions that do not conform with past records

• Clinical data modeling:

• We developed and improved multi-dimensional data models 
and methods

• Anomaly detection:

• We proposed a new approach to multivariate anomaly 
detection that estimates the anomalousness of observations-
decisions pairs, using the conditional likelihood under a trained 
model
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