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● Malignant Melanoma
○ Early Detection Critical

■ 99% vs < 35% survival rate

○ Traditional Approach: ABCDE rule
■ Clinical expertise: Pattern recognition based on experience

Background
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● AI-based Diagnostic Tools

○ Single Modality
■ Image-only methods

● Limited to visual features, require preprocessing

○ Multi-Modality
■ Vision-Language Models (VLMs): Join processing of images and text

● Advantages: No preprocessing required, integrate clinical information
● Challenge: General-purpose training

1- and 5-year relative survival curves as a function 
of age at diagnosis [Aiden et al., 2020]
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The ABCDEs of Detection Melanoma [Alfghani, 2018]
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● VLMs for Medical Domain

○ General-purpose training: Lack medical domain specificity

○ Fine-tuning limitation: Resource intensive, privacy constraints, data variability

Challenges
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● Example-based explainability - Find similar cases to justify decision

○ More effective at decisions if they mimicked a dermatologist’s experience

■ AI: Classification based on content-based image retrieval

■ Human: Compare with similar cases with structured analysis



Motivation
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● Retrieval-Augmented Generation (RAG) for Medical Reasoning
○ Clinical insight: Physicians compare new cases with similar historical cases

○ External knowledge: Incorporates relevant examples without fine-tuning

○ Medical application: Retrieve similar patient cases

● Retrieval-augmented VLM-based diagnostic framework

○ Can VLM be effectively used for dermoscopic image classification?

○ Does RAG improve performance through example-based reasoning without 

fine-tuning?
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Proposed Approach

Multimodal Embedding and 
Case Indexing
(Indexing)

Semantically-Guided Retrieval
(Retrieval)

Prompt Construction and VLM Inference
(Generation)



● Prompt Construction

○ Task Definition

■ Clear instruction to classify

Proposed Approach
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Determine whether the lesion is “Malignant” 
or “Benign” based on the patient’s 
information and image. 
Please choose one of the following options: 
Malignant or Benign.

<Example>
         Sex is female, Age is 40, Anatom 
         Site General Challenge is 
         posterior torso.
         ASSISTANT: malignant

         Sex is male, Age is 50, Anatom 
         Site General Challenge is         
         lower extremity.
         ASSISTANT: benign

<Input>
         Sex is female, Age is 45, Anatom 
         Site General Challenge is anterior 
         torso.
         ASSISTANT:

○ Constrained Output

○ Contextual Examples
■ Infer the label

■ Top-K (K-shot) similar cases 

○ Target query

■ Zero-shot cases
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Proposed Approach

Attribute Value

sex female

age_approx 55.0

anatomic_site_general_challenge anterior torso

benign_malignant benign

Raw Clinical Metadata

● Template-Based Sentence Transformation
○ 3 serialization strategies:

1. HTML: Preserve tabular structure

2. Attribute-Value pair: Reduce prompt length and improve parsing

3. Sentence: VLMs training style

<table>
 <tr>
  <th>Sex</th>
  <th>Age</th>
  <th>Anatomic Site General Challenge</th>
 </tr>
 <tr>
  <td>female</td>
  <td>55</td>
  <td>anterior torso</td>
 </tr>
</table>

HTML

Sex: female, 
Age: 55,
Anatomic Site General Challenge: 
anterior torso

Attribute-Value Pair

Sex is female, Age is 55, 
Anatomic Site General Challenge is 
anterior torso.

Sentence



● Multimodal Embedding and Case Indexing

○ Use modality-specific encoders

■ Image: Resized to 224x224 and encoded using CNN backbones 

● ResNeXt-50, EfficientNet-V2-M

■ Text: Serialized into text and embedding using a pre-trained language model 

Proposed Approach
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Image Embedding
CNN backbones

Resize (224x224)

Attribute Value

sex female

age_approx 55.0

anatomic_site_general_challenge anterior torso

benign_malignant benign

Sex is female, 
Age is 55, 
Anatomic Site General 
Challenge is anterior 
torso.

BERT
Text Embedding



● Case Indexing and Retrieval
○ Stored in FAISS-based database

Proposed Approach
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○ Similarity is computed using dot-product

➡ Top-K (K-shot) most similar patient cases retrieved as contextual examples

Image Embedding

Text Embedding

Image Text

User
Image Text

Vector Database

Concat



Generate

● Classification using VLMs

○ Generate diagnosis results in natural language text form

○ Parse to extract sentence containing the keywords “malignant” or “benign”

Proposed Approach
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Parse

Determine whether the lesion is “Malignant” 
or “Benign” based on the patient’s 
information and image. 
Please choose one of the following options: 
Malignant or Benign.

<Example>
         Sex is female, Age is 40, Anatom 
         Site General Challenge is 
         posterior torso.
         ASSISTANT: malignant

         Sex is male, Age is 50, Anatom 
         Site General Challenge is         
         lower extremity.
         ASSISTANT: benign

<Input>
         Sex is female, Age is 45, Anatom 
         Site General Challenge is anterior 
         torso.
         ASSISTANT:

LLaVA
The lesion appears to be 

malignant

Malignant

Benign

This lesion is benign.

Malignant

Benign



● ISIC 2019 dataset
○ Binary classification task: Malignant vs. Benign

○ Dermoscopic images with corresponding patient metadata (age, sex, anatomical site)

○ 70/30 split for train / test

● Evaluation metrics
○ Accuracy, Balanced accuracy, F1 score

● Baselines
○ Image-based: ResNeXt-50, EfficientNet-V2-M

○ Text-based: Random Forest, Vicuna-7B v1.5

○ Multimodal early-fusion: Classified via Random Forest, ReLU-activated FNN

○ Zero-shot VLM: LLaVA v1.5

● Ours
○ Training data (16,756 image–text pairs) indexed with FAISS

○ Retrieve Top-2 neighbors (K = 1,2,3,4)

Experimental Setup
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● Can VLM be effectively used for dermoscopic image classification?

○ Single-Modality Limitations: Image-based and text-based achieve < 30% F1 score

■ Multimodal advantage: 42.7% improvement

○ VLM advantage: 74.9% improvement

○ RAG effectiveness: 

■ Achieve 44% improvement over best baseline

■ 1.8x better than zero-shot VLM

Results
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● Does RAG improve performance through example-based reasoning without 

fine-tuning?

○ Similar lesions with corresponding patient’s metadata

Results
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Fig 2. (a) Misclassified case by all baselines (LLM, early-fusion, zero-shot VLM) 
correctly classified by our method (K = 2).
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● Effect of Input Serialization

○ Structured metadata encoding enhances VLM's clinical understanding

Results
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● Proposed a retrieval-augmented VLM framework to improve melanoma 

classification using retrieved similar cases

● Provide example-based explanations via retrieved similar cases

● Achieve improved diagnostic performance without fine-tuning

● Future work
○ Extend to multi-class skin lesion classification and other multimodal clinical tasks

● Limitations 
○ Depends on curated training data

○ Retrieval speed needs improvement for real-time use
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Conclusion
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