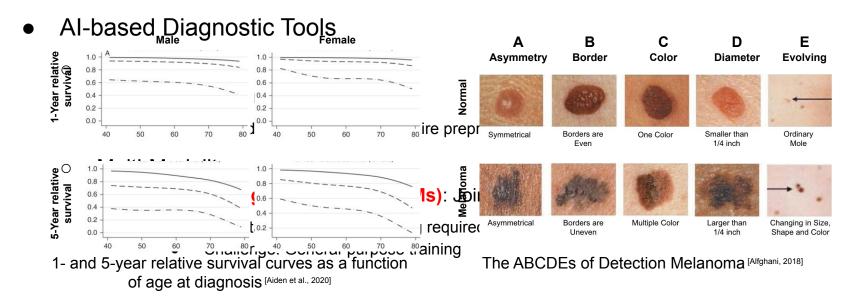


10th International Skin Imaging Collaboration (ISIC) Workshop on Skin Image Analysis @ MICCAI 2025

Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis

Jihyun Moon, Charmgil Hong

{jhmoon, <u>charmgil</u>}@handong.ac.kr Handong Global University



Background

Malignant Melanoma

- Early Detection Critical
 - 99% vs < 35% survival rate
- Traditional Approach: ABCDE rule
 - Clinical expertise: Pattern recognition based on experience

Challenges

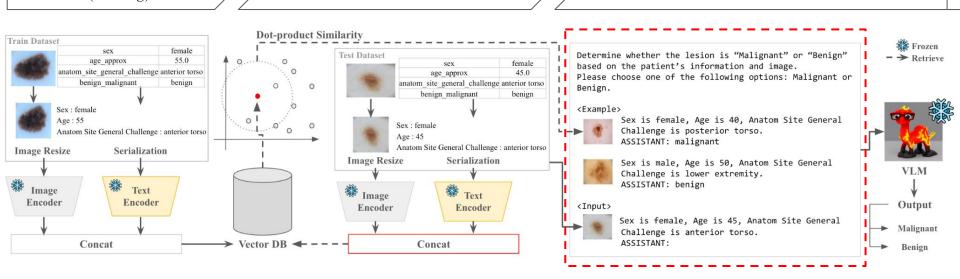
- VLMs for Medical Domain
 - General-purpose training: Lack medical domain specificity
 - Fine-tuning limitation: Resource intensive, privacy constraints, data variability
- Example-based explainability Find similar cases to justify decision
 - More effective at decisions if they mimicked a dermatologist's experience
 - AI: Classification based on content-based image retrieval
 - **Human**: Compare with similar cases with structured analysis

Motivation

- Retrieval-Augmented Generation (RAG) for Medical Reasoning
 - Clinical insight: Physicians compare new cases with similar historical cases
 - External knowledge: Incorporates relevant examples without fine-tuning
 - Medical application: Retrieve similar patient cases

Retrieval-augmented VLM-based diagnostic framework

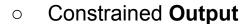
- Can VLM be effectively used for dermoscopic image classification?
- Does RAG improve performance through example-based reasoning without fine-tuning?



Multimodal Embedding and Case Indexing (Indexing)

Semantically-Guided Retrieval (Retrieval)

(Generation)


Prompt Construction and VLM Inference

- Prompt Construction
 - Task Definition

Contextual Examples

- Infer the label
- Top-K (K-shot) similar cases

Zero-shot cases

Determine whether the lesion is "Malignant" or "Benign" based on the patient's information and image. _____Please choose one of the following options: Malignant or Benign.

L<Example>

Sex is female, Age is 40, Anatom Site General Challenge is posterior torso.

ASSISTANT: malignant

Sex is male, Age is 50, Anatom Site General Challenge is lower extremity.

ASSISTANT: benign

|<Input>

Sex is female, Age is 45, Anatom Site General Challenge is anterior torso.

ASSISTANT:

- Template-Based Sentence Transformation
 - 3 serialization strategies:
 - 1. **HTML**: Preserve tabular structure
 - 2. Attribute-Value pair: Reduce prompt length and improve parsing
 - 3. Sentence: VLMs training style

Attribute	Value	
sex	female	
age_approx	55.0	
anatomic_site_general_challenge	anterior torso	
benign_malignant	benign	

>Sex:

Age

Sex:
Age

Sex:
Age

Age
Sex:

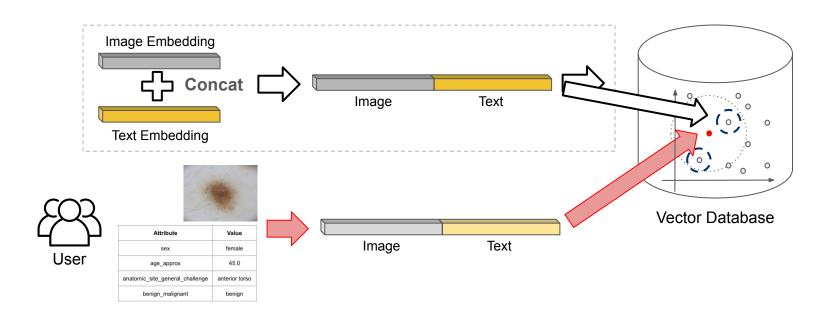
Age
Sex:
<

Raw Clinical Metadata

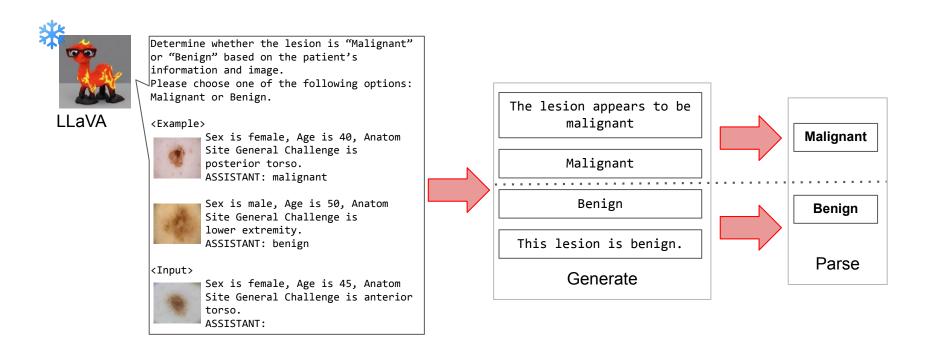
Attrib Satt Value Pair

- Multimodal Embedding and Case Indexing
 - Use modality-specific encoders
 - Image: Resized to 224x224 and encoded using CNN backbones
 - ResNeXt-50, EfficientNet-V2-M

torso.


■ **Text**: Serialized into text and embedding using a pre-trained language model

Attribute	Value		Sex is female,			14th	
sex	female		·	_		***	
age_approx	55.0		Age is 55,		BERT		
anatomic_site_general_challenge	anterior torso		Anatomic Site General	V			Text Embedding
benign malignant	benian	1	Challenge is anterior				Text Embedding



- Case Indexing and Retrieval
 - Stored in FAISS-based database
 - Similarity is computed using dot-product
 - **→ Top-K (K-shot)** most similar patient cases retrieved as contextual examples

- Classification using VLMs
 - Generate diagnosis results in natural language text form
 - Parse to extract sentence containing the keywords "malignant" or "benign"

Experimental Setup

- ISIC 2019 dataset
 - Binary classification task: Malignant vs. Benign
 - Dermoscopic images with corresponding patient metadata (age, sex, anatomical site)
 - o 70/30 split for train / test
- Evaluation metrics
 - Accuracy, Balanced accuracy, F1 score

Baselines

- Image-based: ResNeXt-50, EfficientNet-V2-M
- Text-based: Random Forest, Vicuna-7B v1.5
- Multimodal early-fusion: Classified via Random Forest, ReLU-activated FNN
- Zero-shot VLM: LLaVA v1.5

Ours

- Training data (16,756 image–text pairs) indexed with FAISS
- Retrieve **Top-2** neighbors (K = 1,2,3,4)

Results

- Can VLM be effectively used for dermoscopic image classification?
 - Single-Modality Limitations: Image-based and text-based achieve < 30% F1 score
 - Multimodal advantage: **42.7%** improvement
 - VLM advantage: 74.9% improvement
 - RAG effectiveness:
 - Achieve 44% improvement over best baseline
 - 1.8x better than zero-shot VLM

•	Modality				Balanced				
		Image	Metadata	Model	Serialization	Accuracy	Accuracy	F1 score	
es	Image-based	. .	-	EfficientNet-V2-M	-	0.6954	0.5061	0.2001	1
ine	Text-based	-	✓	Vicuna 7B v1.5	Sentence	0.6063	0.5152	0.2613	+ 42.7
40	Multimoal Early-Fusion	✓	√	BERT + ResNeXT-50 + FNN	HTML	0.6819	0.5079	0.2132	+ 74.9
m	Zero-Shot VLM	✓	✓	LLaVA 7B v1.5 hf	Attribute-Value pair	0.7126	0.6128	0.3729	· , 4.5
	Ours (K = 2)	✓	✓	BERT + ResNeXt-50 + LLaVA 7B v 1.5 hf	Attribute-Value pair	0.8876	0.797	0.6864	+ 44

Results

- Does RAG improve performance through example-based reasoning without fine-tuning?
 - Similar lesions with corresponding patient's metadata

	Ground Truth	Malignant	Benign		
	Input	Sex: male Age: 75.0 Anatom Site General Challenge: anterior torso	Sex: female Age: 85.0 Anatom Site General Challenge: anterior torso		
eved Cases	Ours at <i>K</i> = 1	Sex: male Age: 75.0 Anatom Site General Challenge: anterior torso ASSISTANT: malignant	Sex: female Age: 85.0		
Retri Similar	Ours at <i>K</i> = 2	Sex: female Age: 65.0 Anatom Site General Challenge: anterior torso ASSISTANT: malignant	Sex: male Age: 70.0 Anatom Site General Challenge: anterior torso ASSISTANT: benign		

Fig 2. (a) Misclassified case by all baselines (LLM, early-fusion, zero-shot VLM) correctly classified by our method (K = 2).

Results

- Effect of Input Serialization
 - o Structured metadata encoding enhances VLM's clinical understanding

Ground Truth	Benign		Malignant			
Serialization	HTML	Attribute-value pair	Sentence	Attribute-value pair		
Input	SexAge<	Sex: male Age: 5.0 Anatom Site General Challenge: lower extremity	Sex is male, Age is 40.0, Anatom Site General Challenge is upper extremity.	Sex: male Age: 40.0 Anatom Site General Challenge: upper extremity		
Prediction	Malignant	Benign	Benign	Malignant		
Ours at K =1	SexAge<	Sex: male Age: 35.0 Anatom Site General Challenge: lower extremity ASSISTANT: benign	Sex is male, Age is 45.0, Anatom Site General Challenge is head/neck. ASSISTANT: benign	Sex: male Age: 55.0 Anatom Site General Challenge: anterior torso ASSISTANT: benign		
Ours at K = 2	SexAge<	Sex: male Age: 5.0 Anatom Site General Challenge: anterior torso ASSISTANT: benign	Sex is male, Age is 55.0, Anatom Site General Challenge is anterior torso. ASSISTANT: benign	Sex: male Age: 40.0 Anatom Site General Challenge: upper extremity ASSISTANT: malignant		

Conclusion

- Proposed a retrieval-augmented VLM framework to improve melanoma classification using retrieved similar cases
- Provide example-based explanations via retrieved similar cases
- Achieve improved diagnostic performance without fine-tuning
- Future work
 - Extend to multi-class skin lesion classification and other multimodal clinical tasks
- Limitations
 - Depends on curated training data
 - Retrieval speed needs improvement for real-time use

Thank you for your attention

Title Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis

Presenter Jihyun Moon (jhmoon@handong.ac.kr)

Advisor Charmgil Hong (charmgil@handong.ac.kr)